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ABSTRACT

Suppose samples of size n are chosen at random from

lots of size N and examined for the presence (or absence)

of a certain type (or types) of defect. If inspection is

not perfect, there may be a probability, p, of failing to

detect a defect when it is, in fact, present. It is de-

sired to estimate p from records of the number of items

found to have the defect(s) on inspection.

In the absence of further information, the problem
cannot be answered on the basis of single samples, of size

n, from each of a number of lots. Some further assump-

tions are needed - such as supposing the number of de-

fective items per lot is (nearly) constant. Alternatively,

* some more elaborate sampling - for example, repeated sam-

pling from the same lot - may provide the necessary in-

formation.

The paper describes several methods of estimation

utilizing various forms of additional data and informa-

tion. Some as yet unsolved problems are briefly dis-

cussed. Acoession For
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I. Introduction

Suppose samples of size n are chosen at random from lots of size N and

examined for the presence (or absence) of a certain type (or types) of defect.

If inspection is not perfect, there may be a probability (1-p) of falling to de-

tect a defect when it is, In fact, present. It is aesired to estimate p from

records of the number of items found to have the defect(s) on inspection. (We

assume that the probability of 'false positive' - declaring a good item to be

defective - is negligible.)

If sampling is with replacement, it is not possible to estimate p on the

basis of single samples, of size n, from each of a number of lots, even supposing

the actual proportion of defective items (0) to be constant from lot to lot.

This is because the distribution of the observed number of defectives (Z) in such

a sample is binomial with parameters (n, Op) and it is not-possible to disen-

tangle p from e.

If sampling is without replacement, again supposing the proportion of do-

fectives ( uD/N when D is the number of defectives in the lot) the distribution

of Z is a mixture of binomial distributions with parameters (Y,p) ,,where Y - the

actual nwibr of defective items in the sample *has a'hyprgeometric distribution

with parameters (n,,N). Conventionally we write (as in [1]).

Z Bin(Yp) A Hypg (nD,N)
Y
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From a set of values of m independent random variables (Z1, Z2,...Zm), knowing

n and N, it is possible to estimate p by maximum likelihood from the likelihood

function

(z Z4 .

The limits of sumation for y are max(Zin-N+D) < y c min(n,D). However, it is to

be expected - in view of the fact that as N increases we approved the situation of

sampling without replacement - that no great accuracy i, estimating p will be

attainable. A major part of difficulty in the nuisafe parameters D(or e.D/N). For

reasonable accuracy some form of repeated sampling will be needed.

2. Estimates of p

If we are in the fortunate position of having a number of items known to be

defective we can obtain a simple estimator (of p) by testing them repeatedly and

estimating p by the proportion of times a 'defective' decision is obtained. If

this is not the case at the beginning of the investigation we might, however,

be in a position to exploit the fact that an item declared 'defective' at any

time must (according to our assumptions) be defective. Cenoting by N the number

of items declared defective Just J times in m trials (so that N0 + N1 +...+ Nm n,

and if p a 1, N0 a n-y, Nm - y) a plausible but specious argument might run as

follows:

OFor each itam, we discard the first 'defective' decision and observe
U

the proportion of defective decision in the remaining iiNJ sets of

(*-I) trials. Since these are independent, the total number ofm

defectives in the trials has a binomial ((m-l)i 1 Nj,p) distribution,
j

and our estimate of p is unbiased, with an easily compute. standard

deviation. (If No s m, then no estimation is possible)."
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(It is not difficult to see that this will produce a negatively biased estimator

of p, because in all the trials which are thrown away a decision of 'defective'

is reached. In fact the estimator is

L I J
I OJ-,O, 1 l u-, (9)

and its expected value is

p.1,P.m- 
(10)

1-(1-;p) m

We could take notice of only those trials following the first 'defective'

decision; although this will not use all the information available, it does lead

to simple formulae. The observed proportion of 'defective' decisions is no? an

unbiased estimator of p; the (conditional) distribution of the number of 'defective'

decisions counted is binomial with. parameters (total number of inspections included

in count, p).

Suppose, now, that we have m repeated inspections of a set of n items (among

which an unknown number y are defective) and have been able to record the results

of individual inspections (and not just total number of decisions of 'defective'

for each inspection of the set of n items). The likelihood function is

yn+No,N 1 ... ,IN) {( l (NI

m

" ~ o'*"" M. ) ¢ # €P),'"

(n-No 1 y S n)
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where N0 a n - JNjis the number of items which are not declared defective in
jl

m
any of the m inspections. Note that (N0, j JN ) is a sufficient statistic for

(yIp); JINj is the total number of 'defective' decisions. If ap- were known, the

maximum likelihood estimator of p would be

A m .

P(y) - (my)-"I  u 'jNj (my)' T. say (12)
JU

The corresponding maximized log likelihood would be

A n-No+l
log 1(y) - K + I log (y-l) + (my-T) log(my-T)-my log my (13)

t0

where K does not depend on y. We then seek to maximize (13) with respect to y,

subject to n > y > n - N0. Note that we are not primarily interested in the value

of y itself, but we need the value, y, maximizing (13) to calculate the maximum

likelihood estimator, p(p), of p.

useful practical method is obtained by noting that for the jJ Nj items which

we know to be defective, the numbers of times each item is declared 'defective' can

be regarded as observed values of independent random variables each having a binomial

(mp) distribution, truncated by omission of zero values. Each such variable has

expected value mp{1-(1-p)m")1. Equating sample means and expected values gives the

equation

.P l-ll-"1 (n-No'-T

Average number of times an article is judged defective,
given that It Is so judged at least once.

This estimator is, in fact, the conditional @aximwu likelihood estimator of p, given

N0•



The equation can be solved iteratively, writing it in the fom

p u rn-i(n-N 0)-'I9{l-(1-o)m} (14)

We note that

var(T) - mnp(1-p)e - m n(n-1)(N-1) lp2 e(1-e)

and

var(P) m2 (n-N0)'2{1-(1-p)m}
2 var(T)

If an estimator of y is needed, we note that, with

m

p - N ENJ a n - NoIYpJ - y{l-(1-)}.

Replacing expected by actual values, we get the estimator

p - min(n, ( n-NO){1-(1-p)m' 1 )- min(n,"(,pY1 T (15)

where E ] denotes 'nearest integer to'.

As a numerical example suppose we test each of 50 (-n) items three (-m) times

and obtain

N 0  43; N1 a 1; N2 a 1; N3 a 5

so that
3

T I JNJ a + 2 + 15 a 18. Equation (14) givesJu

p{3p - 3p2 + p3)-1 a (3 x 7)-118 6/7

whie2 _ 11

leading to P a 0.8545

Frau (15),9 Y min [so, 18 7.,.,.~ ~ x,,. 0.8.54 9.
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Note that the same values of and Y would be obtained, whatever the value

of n (> 7).

Maximum likelihood estimation has been discussed by Lindsey [2).
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